If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-3575=0
a = 2; b = 10; c = -3575;
Δ = b2-4ac
Δ = 102-4·2·(-3575)
Δ = 28700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28700}=\sqrt{100*287}=\sqrt{100}*\sqrt{287}=10\sqrt{287}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{287}}{2*2}=\frac{-10-10\sqrt{287}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{287}}{2*2}=\frac{-10+10\sqrt{287}}{4} $
| x+41+2x+125=x+163 | | (2t+9)/7=5 | | 8-11k=-233 | | (x-3)/(4)=12 | | -2w+8=6(w+8) | | 8e+4=-5e+14+13e | | 4^2-3v=4 | | h/4+-46=-39 | | 2x^2+x-2380=0 | | -167+62(3x-205)+369x=15 | | (2t+9)+(9/7=5 | | -8v+6(v+7)=24 | | 3x+24=-1x-(-5)+23 | | E^(2x)=1 | | 2n+11=63 | | 8m-15=25 | | 7^6*7^3=7n | | 4+3b=37 | | 9e+4=15e+14+13e | | 5(3x+4)-3x=4+7(2x-1( | | 1(3y+4)=13 | | 4x3x=12,000 | | 5x/3=6+x | | Z+6=2z34 | | 1=7-2n | | 60-4x=130-24x | | 7a+16–3a=-4 | | -2(w+5)=-5w+17 | | (7x+8)=(7x+8) | | |x+23|=9 | | b2=49 | | 5(x+2)+3=-2 |